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Abstract— In this paper, we investigate the use of Gaussian
mixture probability hypothesis density filters for multiple person
tracking using ultrawideband (UWB) radar sensors in an indoor
environment. An experimental setup consisting of a network of
UWB radar sensors and a computer is designed, and a new
detection algorithm is proposed. The results of this experimental
proof-of-concept study show that it is possible to accurately track
multiple targets using a UWB radar sensor network in indoor
environments based on the proposed approach.

Index Terms— Multiple person detection, target tracking, PHD
filter, ultra-wideband, radar.

I. INTRODUCTION

W IRELESS sensor networks (WSN) have received
tremendous attention in last decade due to their critical

importance in a wide variety of applications such as
surveillance, and due to the theoretical and practical challenges
they introduce [1], [2]. For indoor scenarios, ultra-
wideband (UWB) sensors can be employed because of their
extraordinary resolution and localization precision [3], [4].
There are also additional advantages of UWB signals such as
low power consumption, low probability of interception, and
co-existence with a large number of devices [5]. For multi-
sensor multi-object tracking applications, UWB is a well-
suited technology. Since UWB signals are characterized by
the transmission of a few nanosecond duration pulses [6]–[9],
they have very high time resolution and localization precision,
which make UWB sensors an ideal equipment for short range
radar sensor network applications [10], [11]. In this study,
UWB radar sensors are employed for detecting and tracking
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multiple moving objects in an indoor environment in the
context of passive localization [12]–[17].

Multiple target tracking is a subfield of signal process-
ing with applications spanning many different engineering
disciplines [18]. In this subfield of signal processing, the
random finite set (RFS) approach is one of the newest devel-
opments that provides a general systematic framework for
multi-target systems by modeling the multi-target state as an
RFS [19], [20]. The RFS approach is considered to be a
very promising alternative to handle the multi-target multi-
detection association problem faced in multi-target tracking
applications. The RFS approach treats the collection of indi-
vidual measurements and the individual targets as a set-valued
measurement and set-valued state, respectively. It is shown that
the sequential estimation of multiple targets buried in clutter
with association uncertainties can be formulized in a Bayesian
filtering framework by modeling set-valued measurements and
set-valued states as RFSs [19]. The probability hypothesis
density (PHD) filter, an approximation of this theoretically
optimal approach to multi-target tracking, propagates the first-
order statistical moment of the RFS of states in time and avoids
the combinatorial data association problem. The dimension of
the PHD filtering is equal to the dimension of the single target
state. Despite its advantages, the recursions of the PHD filter
involve multiple integrals having no closed form solutions.
There are two implementations of the PHD filter; one is
using sequential Monte-Carlo (SMC) method, and the other
one is using Gaussian mixtures (GM). Each implementation
method has its own pros and cons [19]. GM implementation is
very popular since it provides a closed form analytic solution
to PHD recursions under linear Gaussian target dynamics
and measurement models [19]. Moreover, contrary to SMC
implementation, GM implementation provides reliable state
estimates extracted from the posterior intensity in an easier
and efficient way. Alternatively, SMC implementation imposes
no such restrictions and has the ability to handle nonlinear
target dynamics and measurement models. It can be said that
SMC implementation is a more general framework for PHD
recursions. On the other hand, its performance is affected by
different kind of problems in reality [21]–[23]. Therefore, in
general, the GM based approach is easier, effective and more
intuitive.

Multiple target tracking via UWB sensors has been consid-
ered in some studies in the literature. In [24], time of flight
information of the targets is used for tracking via PHD filters.
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A single scenario with targets moving in a straight line
(no maneuvers) is considered, and directional horn antennas
are used for powerful signal reception. Each sensor is equipped
with one transmitter and two receivers, which are synchronized
via a digital resonance oscillator. The blind zone problem and
its solution are explained in [25] and new approaches are
developed for this problem in tracking. In [26], multiple person
tracking via UWB radar sensors is performed by utilizing
time variations of the channel impulse response due to the
presence of people between the transmitter and the receiver.
Background subtraction and constant false alarm rate (CFAR)
algorithms are employed for person detection, and GM-PHD
filter is used for tracking. In a similar study, [27] proposes
an indoor UWB person detection and ranging technique that
does not require any information about the environment and
exploits the temporal variations in the received signal due to
the presence of a person. Finally, in [28], localization of a
passive reflector based on backscattering range measurements
is studied, and theoretical performance bounds are presented.

In this paper, a new approach is developed for multi-
target tracking via a network of UWB radar sensors based on
GM-PHD filtering. A novel detection technique is proposed
for removing a significant part of clutter, which facilitates
robust localization. The performance of the proposed tracking
method shows that multiple targets can be tracked efficiently in
an indoor environment. Although the PHD filtering approach
has been considered for multi-target tracking in [24], the
considered system has high cost and complexity due to the
use of six experimental sensors, each equipped with one
transmitter and two receivers, which employ directional horn
antennas. Also, a single scenario is considered with targets
moving in a straight line without any maneuvers [24]. In our
study, four small off-the-shelf UWB radar sensors produced
by TimeDomain [29] are employed, where each sensor has a
single transmitter and a receiver. Scenarios containing multiple
maneuvering targets are also investigated. In addition, the
proposed approach does not make any specific assumptions
about the environment and positions of the targets. To sum
up, there are two main contributions in this paper: Firstly, we
propose a new detection technique which effectively handles
severe multipath. Secondly, the GM-PHD filter is success-
fully used in the tagless multi-person tracking problem using
off-the-shelf UWB radar sensors.

The remainder of the manuscript is organized as follows:
In Section II, sensor and measurement models are presented,
and the proposed detection method is examined in Section III.
Section IV presents the RFS based filtering. The details of
the radar sensors are explained in Section V and Section VI
discuses the experimental results. Finally, conclusions are
given in Section VII.

II. SENSOR AND MEASUREMENT MODEL

Before describing the sensor and measurement models,
the transmitted signal model for the UWB system is given
first:

s(t) =
N f −1∑

j=0

Np∑

i=1

p(t − i Tp − j T f ) (1)

Fig. 1. Indoor environment with four UWB radar sensors. Blue signals and
red signals represent transmitted and received signals, respectively.

where p(t) represents the UWB pulse, T f is the duration of
a frame, Tp is the duration between UWB pulses in a frame
(which is larger than the pulse duration), N f is the number of
frames, and Np is the number of pulses in a frame. Signal s(t)
is produced by a UWB transmitter and the reflected signals
are collected by a UWB receiver to determine the distances
between targets and sensors in an indoor environment. In the
process, time-of-arrival (ToA) parameters are estimated from
the incoming signal, and distances corresponding to arriving
signal paths are calculated based on ToA values [6].

In the measurement model, there are a number of (four
in the experiments) UWB radar sensors, which constantly
transmit signals, and the reflected signals from moving objects
(in our case single/multiple person(s) in an indoor environ-
ment) are collected by each of these sensors as depicted
in Fig. 1.

The output of each sensor is the range measurements related
to moving objects. It is assumed that the locations of the
sensors are known to the fusion center and each sensor sends
its measurements to the fusion center. The state vector of a
target at time k is represented by xk = [xk, yk, ẋk, ẏk]T , where
[xk, yk] is the position, [ẋk, ẏk] is the velocity of the target and
T denotes transpose operation. The target dynamics is modeled
by the nearly-constant-velocity model [30], [31]:

xk = F xk−1 + vk (2)

where k is the discrete time index, F is the state transition
matrix given as

F =
[

I2 �I2
02 I2

]
(3)

and vk ∼ N (v; 0, Q) is the white Gaussian process noise, the
covariance matrix of which is expressed as

Q = σ 2
v

[ �3

3 I2
�2

2 I2
�2

2 I2 �I2

]
. (4)

In (3) and (4), � denotes the sampling interval, σv is the
standard deviation of the process noise, and In , and 0n denote
n × n identity and zero matrices, respectively. This model is
also known as the white-noise-acceleration model due to the
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fact that the accelerations along x-direction and y-direction
are modeled as white noise. Note that the word “nearly” used
in name of the model, nearly-constant-velocity model, implies
that these accelerations are actually small [30]. This model
is simple, widely used, very appropriate for indoor tracking
applications (i.e., in indoor areas, the motion of a target is con-
strained by the structured corridors and rooms), and effectively
handles random maneuvers [32]–[34]. Moreover, by changing
the value of the process noise standard deviation, σv, one can
adjust the acceleration noise intensity and can handle target
maneuvers up to a certain level.

Range measurements are collected by each sensor in the
area. The measured range value by the i -th sensor located at
[xi , yi ] is given by

hi (xk) =
√

(xk − xi )
2 + (yk − yi )

2 + εk,i (5)

for i = 1, . . . , Ns , where Ns is the number of sensors and
εk,i is measurement noise in sensor i , which is modeled as
εk,i ∼ N (ε; 0, σ 2

ε ).
The Jacobian of hi (xk), Hk,i , to be used in the filtering

equations, is obtained as follows:

Hk,i =
[

∂hi (xk)

∂xk

∂hi (xk)

∂yk

∂hi (xk)

∂ ẋk

∂hi (xk)

∂ ẏk

]
(6)

where the elements are expressed as

∂hi (xk)

∂xk
= xk − xi√

(xk − xi )2 + (yk − yi )2
(7)

∂hi (xk)

∂yk
= yk − yi√

(xk − xi )2 + (yk − yi )2
(8)

∂hi (xk)

∂ ẋk
= 0 (9)

∂hi (yk)

∂ ẏk
= 0. (10)

III. RANDOM FINITE SETS (RFS) BASED FILTERING

The RFS framework for multiple target tracking proposed
by Mahler combines the problems of combinatorial data
association, detection, classification and target tracking within
a unified compact Bayesian paradigm [19]. In the following
subsections, the basic RFS notation, multiple target general-
ization of the Bayes filter and its first order approximation
PHD filter are described.

A. RFS Formulation

The RFS approach treats the collection of the individual
targets and individual measurements as a set-valued state and
set-valued measurement, respectively, as

Xk = {xk,1, ..., xk,M(k)} ∈ F(X ) (11)

Zk = {zk,1, ..., zk,N(k)} ∈ F(Z) (12)

where M(k) is the number of targets at time k, N(k) is the
number of measurements at time k, F(X ) and F(Z) are the set
of all possible finite subsets of state space X and measurement
space Z , respectively. An RFS model for the time evolution

of a multi-target state Xk−1 at time k − 1 to the multi-target
state Xk at time k is defined as

Xk =
⎡

⎣
⋃

ζ∈Xk−1

Sk|k−1(ζ )

⎤

⎦ ∪ �k (13)

where Sk|k−1(ζ ) is the RFS of surviving targets from previous
state ζ at time k and �k is the RFS of spontaneous target births
at time k. The RFS measurement model for a multi-target state
Xk at time k can be written as

Zk = Kk ∪
⎡

⎣
⋃

x∈Xk

�k(x)

⎤

⎦ (14)

where Kk is the RFS of clutter or false measurements, and
�k(x) is the RFS of multi-target state originated measure-
ments, which can take values of either zk if target is detected,
or ∅ if no target is detected.

B. Multi-Target Filtering

Having very briefly summarized some key points of the
RFS framework, we can define the RFS based multi-target
Bayes filter. The optimal multi-target Bayes filter propagates
the multi-target posterior density pk(·|Z1:k) conditioned on the
sets of measurements up to time k, Z1:k , in time with the
following recursion:

pk|k−1(Xk |Z1:k−1) =
∫

fk|k−1(Xk |X)pk−1(X |Z1:k−1)δX

(15)

pk(Xk |Z1:k) = gk(Zk|Xk)pk|k−1(Xk |Z1:k−1)∫
gk(Zk|X)pk|k−1(X |Z1:k−1)δX

(16)

where fk|k−1 is the multi-target transition density, gk(Zk|Xk)
is the multi-target likelihood and the integrals are set integrals
as defined in [19]. The multi-target Bayes recursion involves
multiple integrals and the complexity of computing it grows
exponentially with the number of targets. Therefore, it is not
practical for scenarios where there exist more than a few
targets.

C. The Probability Hypothesis Density (PHD) Filter

To alleviate the computational burden in calculating the
optimal filter given above, the PHD filter was proposed
as a practical suboptimal alternative [19]. The PHD filter
propagates the first-order statistical moment of the posterior
multi-target state, instead of propagating the multi-target
posterior density. Let the intensities associated with the
multi-target posterior density pk and the multitarget predicted
density pk|k−1 in the optimal multi-target Bayes recursion be
represented by vk and vk|k−1, respectively. Then, the PHD
recursion is defined as

vk|k−1(x) =
∫

ps fk|k−1(x|ζ )vk−1(ζ )dζ + γk(x) (17)

vk(x) = (1 − pD)vk|k−1(x)

+
∑

z∈Zk

pD gk(z|x) vk|k−1(x)

κk(z) + ∫
pD gk(z|ξ )vk|k−1(ξ)dξ

(18)
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where ps is the probability of target survival, γk(x) is the
intensity of spontaneous birth RFS at time k, pD is the
probability of target detection and κk(z) is the intensity of
clutter RFS at time k.

As mentioned before, PHD filters can be implemented
either by using GM [35] or SMC [36]–[38] based methods.
In the next section, we describe the main steps of the
GM implementation.

IV. THE GAUSSIAN MIXTURE PHD (GM-PHD) FILTER

The closed-form solution to the PHD filter, called the
Gaussian mixture PHD (GM-PHD), is originally derived for
linear Gaussian multi-target models, since it makes use of
the Kalman filter to propagate the mean and covariance of
each Gaussian [39]. In addition, to accommodate nonlinear
dynamics and measurement models, several different non-
linear extensions of the GM-PHD are also proposed in the
literature [40], [41]. These nonlinear extensions of the
GM-PHD filter have successfully been used in many different
applications, in which nonlinear target dynamics and measure-
ment models are employed [42]– [48]. In this work, in order
to accommodate nonlinear Gaussian models, an adaptation of
the GM-PHD filter (called as EK-PHD) is employed based
on the idea of extended Kalman filter (EKF), where the
local linearization of the nonlinear measurement function h(x)
(i.e., Hk defined in (6)) is used [39]. We use this adaptation
approach to handle the nonlinearities in the measurement
model in (5).

There are several assumptions used in the GM-PHD recur-
sions. The first one is that each target follows a linear Gaussian
dynamical and measurement model:

fk|k−1(x|ζ ) = N (x; Fζ , Qk−1) (19)

gk(z|x) = N (z; Hkx, σ 2
ε ). (20)

Secondly, the detection and survival probabilities are state and
time independent; that is, pD,k(x) = pD and pS(x) = pS .
Lastly, the intensity of the birth RFSs is Gaussian mixture of
the form

γk(x) =
Jγ,k∑

i=1

w
(i)
γ ,k N (x; m(i)

γ ,k, P(i)
γ ,k) (21)

where Jγ,k , w
(i)
γ ,k , m(i)

γ ,k and P(i)
γ ,k are the given model parame-

ters that determine the birth intensity. The posterior intensity
at time k −1 can be written as a sum of Gaussian components
with different weights, means and covariances as

vk−1(x) =
Jk−1∑

i=1

w
(i)
k−1N

(
x; m(i)

k−1, P(i)
k−1

)
(22)

and an identifying label 
i
k−1 is assigned to each created

Gaussian component. A label table, Lk−1, is formed as

Lk−1 = {


(1)
k−1, ..., 


(Jk−1)
k−1

}
. (23)

At time k, the predicted intensity is also a Gaussian mixture:

vk|k−1(x) = vS,k|k−1(x) + γk(x) (24)

where

vS,k|k−1(x) = pS

Jk−1∑

j=1

w
( j )
k−1N (x; m( j )

S,k|k−1, P( j )
S,k|k−1) (25)

m( j )
S,k|k−1 = F m( j )

k−1 (26)

P( j )
S,k|k−1 = Qk−1 + FP( j )

k−1FT (27)

Each birth component is assigned a new label and concate-
nated with the previous time labels, i.e.,

Lk|k−1 = Lk−1 ∪ Lγ,k−1. (28)

The posterior intensity at time k is also a Gaussian mixture
and can be written as

vk(x) = (1 − pD,k)vk|k−1(x) +
∑

z∈Zk

vD,k(x; z) (29)

where

vD,k(x; z) =
Jk|k−1∑

j=1

w
( j )
k (z)N (x; m( j )

k|k(z), P( j )
k|k ) (30)

w
( j )
k (z) = pD w

( j )
k|k−1q( j )

k (z)

κk(z) + pD
∑Jk|k−1

l=1 w
(l)
k|k−1ql

k(z)
(31)

q j
k (z) = N (z; Hkm( j )

k|k−1, σ
2
ε + HkP( j )

k|k−1HT
k ) (32)

m( j )
k|k(z) = m( j )

k|k−1 + K( j )
k (z − Hkm( j )

k|k−1) (33)

P( j )
k|k = [I − K( j )

k Hk]P( j )
k|k−1 (34)

K( j )
k = P( j )

k|k−1HT
k (HkP( j )

k|k−1HT
k + σ 2

ε )−1 (35)

There will be |Zk |+1 Gaussian components for each predicted
term, where |·| is the cardinality of a set. Then, the identifying
label at time k is

Lk = Lvk|k−1
k|k−1 ∪ Lz1

k|k−1 ∪ ... ∪ Lz|Zk |
k|k−1. (36)

As time progresses, the number of Gaussian components
increases and computational problems occur. To alleviate
this problem, a simple pruning and merging can be used
to decrease the number of Gaussian components propa-
gated [35]. Firstly, the weights below a predefined threshold
are eliminated. Then, the closely spaced Gaussian components
are merged into a single Gaussian component. Starting with the
strongest weighted component, w

j
k , components are merged in

a set W ( j )
k as

W ( j )
k :=

{
i : (m(i)

k − m( j )
k )T (P(i)

k )−1(m(i)
k − m( j )

k ) ≤ ρ
}

(37)

and the resulting merged component parameters are

w̃
(l)
k =

∑

i∈W

w
(i)
k (38)

m̃(l)
k = 1

w̃
(l)
k

∑

i∈W

w
(i)
k x(i)

k (39)

P̃(l)
k = 1

w̃
(l)
k

∑

i∈W

w
(i)
k (P(i)

k + (m̃(l)
k − m(i)

k )(m̃(l)
k − m(i)

k )T )

(40)
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Fig. 2. P410 MRM with attached broadspec antennas [29].

In order to extract multi-target states, the means of the
Gaussian components that have weights greater than some
predefined threshold, are selected:

L̂k =
{
L(i)

k : w
(i)
k > ρ

}
(41)

and the estimated target states set is expressed as

X̂k =
{
(m(i)

k , P(i)
k ) : L(i)

k ∈ L̂k

}
. (42)

V. UWB RADAR SENSORS

In the experiments, four UWB radar sensors named
P410 Monostatic Radar Module (MRM) are used [29].
P410 MRM, shown in Fig. 2, is a small and affordable
monostatic radar platform that provides more than 2 GHz of
RF bandwidth at a center frequency of 4.3 GHz. Each radar
sensor is equipped with an UWB transmitter and an UWB
receiver. The radar sensors use different code channels in order
to prevent interference among the sensors. In addition, for
reducing the effects of severe multipaths at the receiver, there
is an environment scanning phase for a 30 ns duration, which is
used as a reference for determining signals reflected from non-
stationary objects. The UWB pulses are sent from the radar
sensors at every 0.1 second by the transmitter (TX) antenna
and all reflected signals are collected by the receiver (RX)
antenna. P410 MRM UWB sensors provide four types of infor-
mation; raw signal, bandpass signal, motion filtered signal, and
detection list. In some cases, the motion filtered data and detec-
tion lists may not be sufficient to detect the targets accurately
since there can be many unnecessary measurements (due to
the very high resolution of UWB signals) that are originated
from the reflections from other equipments or objects in the
environment. Therefore, we use the bandpass data (see Fig. 3
for an example) in our algorithm in order to eliminate clutter,
and then obtain the motion filtered data, as explained in the
next section. Fig. 4 presents an example of motion filtered data
when a person is present in the environment.

VI. PROPOSED DETECTION/TRACKING ALGORITHM

In order to perform accurate detection and tracking of mul-
tiple persons via UWB radar sensors, the following algorithm
is proposed. The input to the algorithm is the bandpass signal
sets from the UWB radar sensors. Fig. 3 illustrates an example
of bandpass signal at an arbitrary time stamp. After getting the
bandpass signal sets from the radar sensors, the start time (ts )

Fig. 3. Bandpass signal.

Fig. 4. Motion filtered data.

and stop time (t f ) of the experiment are calculated. In total,
Nd sets of measurements are obtained from the sensors, where
Nd is given by

Nd = t f − ts
Ts

(43)

with Ts representing the sampling period of the signal set,
which is equal for all sensors. The bandpass signal set is
filtered by a motion filter in order to mitigate the effects of
the signals coming from stationary objects in the environment.
The following motion filtering method is employed:

mi
k[n] = h[1]r i

k[n] + h[2]r i
k[n − 1]

+ h[3]r i
k[n − 2] + h[4]r i

k[n − 3] (44)

for i ∈ {1, . . . , 4} and k ∈ {1, . . . , Nd }, where r i
k[n] represents

the bandpass signal of the i th radar sensor for the kth mea-
surement set, h[n] denotes the coefficients of the motion filter
with values [1 − 0.6 − 0.3 − 0.1], and Nd is the number of
measurement sets as defined in (43). In other words, for each
measurement set and for each sensor, the motion filter in (44)
is applied to the bandpass signal, and the motion filtered
signal mi

k[n] is generated. The peaks of the motion filtered sig-
nal correspond to possible target distances as can be observed
from Fig. 4.
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Fig. 5. Blocks of motion filtered signal.

Next, each motion filtered signal is divided into (Nb) blocks
as follows:

mi
k, j [n] = mi

k[n + ( j − 1)K ], n = 1, . . . , K (45)

for j ∈ {1, . . . , Nb}, where K is the number of samples in
each block, which is considered as constant.1 An example
illustration is presented in Fig. 5, where Nb = 5. The aim of
dividing the motion filtered signal into blocks is to increase
both the efficiency and the speed of the proposed algorithm,
which can be justified as follows. Due to the very high time
resolution of UWB signals, there exist many peaks in the
motion filtered signal, most of which are originated from
the same targets (that is, each moving object/person results
in many peaks in the motion filtered signal). In order to
determine the number of targets accurately (hence, to track
them efficiently), only a few significant motion filter peaks
should be considered, which is facilitated by the proposed
block operation in (45) (and the energy thresholding technique
explained below). This operation also increases the speed of
the algorithm since a smaller set of measurements are input to
the tracking part of the algorithm. The number of blocks, Nb ,
is an important parameter, which should be selected according
to the number of expected targets in the environment. As the
number of targets increases, Nb should be set to a larger
number.

Once the motion filtered signal is divided into blocks,
the average strength of each block is calculated as
follows:

Ei
k, j � 1

K

K∑

n=1

∣∣∣mi
k, j [n]

∣∣∣ (46)

for j ∈ {1, . . . , Nb}, i ∈ {1, . . . , 4}, and k ∈ {1, . . . , Nd }.
Then, these values are compared to a threshold τi for each
sensor in order to eliminate the blocks that do not contain
signals from the targets. In other words, if the average strength
of a block is below the threshold, then that block is not
considered in the next steps. This process both reduces the

1For simplicity of notation, the size of signal mi
k [n] is assumed to be

an integer multiple of K . Extensions in the absence of this assumption are
straightforward.

TABLE I

PROPOSED ALGORITHM

computational complexity and number of detections. If the
average strength of a block is larger than the threshold, then
the sample index of the strongest motion filter output in that
block is converted into distance (meters) and stored into the
measurement vector Zi

k . Mathematically, for j ∈ {1, . . . , Nb},
if Ei

k, j > τi , then the sample index

arg max
n∈{1,...,K }

∣∣mi
k, j [n]∣∣ (47)

is converted into distance and saved into Zi
k . Therefore, Zi

k is
a vector with Gi

k measurements, where Gi
k ∈ {0, 1, . . . , Nb} is

the number of blocks that satisfy Ei
k, j > τi .2 Measurements

from all four sensors are collected into measurement set Zk

as in (11); that is, Zk = [Z1
k ; Z2

k ; Z3
k ; Z4

k ]. Then, Zk is input
to the GM-PHD filter described in Section IV, and tracking is
performed. The proposed detection and tracking algorithm is
summarized in Table I.

VII. EXPERIMENTAL RESULTS

Experimental results for single and multiple person are
presented in this section. The experiments are performed
in an office room in the Department of Electrical and
Electronics Engineering at Bilkent University. There are many
equipments/objects which can generate multipaths in the office
environment as seen in Fig 6. In the experiments, four
P410 MRMs are used. In order to reduce the number of
detections and the computational complexity of the algorithm,
the number of blocks is set to six in the algorithm; that is,
Nb = 6 (see (45)). The threshold τi in Section VI is set to
12000 (in units of P410 MRM outputs) in order to determine
and eliminate noise only blocks, and the sampling period Ts

is taken as 0.1 second.
The standard deviation of the process noise is taken as

σv = 2 m/s2 and the standard deviation of the measurement
noise is taken as σε = 0.2 m. The spontaneous birth intensities
are described in the center of the tracking area since the
birth locations are assumed as unknown. Hence, our method

2If the strengths of all the blocks are below τi , then Zi
k becomes an empty

vector, Zi
k = ∅.
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Fig. 6. An illustration of the office environment. Four radar sensors are
placed on the chairs.

Fig. 7. Scenario-1 for single-person tracking. Blue solid line and red circles
represent the ground truth and filter estimates, respectively. Black squares are
for UWB radar sensors.

Fig. 8. Scenario-2 for single-person tracking. Blue solid line and red circles
represent the ground truth and filter estimates, respectively. Black squares are
for UWB radar sensors.

can be applied to any scenario and we do not need to
describe the birth intensities even though the tracking is lost.
In the algorithm, the initial weights which are described in
Section IV as in (21) are taken as wi = 0.1. In pruning
parameters, the truncation threshold for the weights is chosen

Fig. 9. Range measurements of sensors in the single-person tracking scenario
(Scenario-2). (a) Sensor 1, (b) Sensor 2, (c) Sensor 3, (d) Sensor 4.

as ρ = 10−6 and the maximum allowable number of Gaussian
terms is taken as 20. In our scenario, the tracking scenario
is not very complicated; hence, this number is set to 20 in
order to have a faster result. However, in complex cases, this
component number can be increased. In addition, clutter is



2234 IEEE SENSORS JOURNAL, VOL. 15, NO. 4, APRIL 2015

Fig. 10. Scenario-1 for multiple person tracking. Green and blue solid lines
denote the ground truth of the first and second person, respectively. Black
squares are for UWB radar sensors.

modeled according to the highest and smallest measurements.
The detected measurements are immersed in clutter that can
be modelled as Poisson RFS Kk with intensity

κk(z) = λcV u(z) (48)

where u(·) is the uniform density over the surveillance region,
V = 12 m2 is the “volume” of the surveillance region, and
λc = 0.417 m−2 is the average number of clutter returns per
unit volume (i.e., 5 clutter returns over the surveillance region).

Our computer has 8 GB RAM and its processor is 3.40 GHz
Intel(R) Core(TM) i7. The proposed approach runs at real-time
and one iteration of the experiment takes approximately 1 s on
the average.

A. Single-Person Tracking Results

In the first set of experiments, we consider the tracking
of one person and study two different scenarios. In the first
scenario (Scenario-1), the person (target) starts from position
(0, 2.5) m. and walks in a straight line until (2.8, 2.5) m. Then,
he turns right and walks until (2.8, 0.5) m. After that, he again
turns right and goes until (0, 0.5) m. The person walks with
a speed of around 0.4 m/s, and the experiment takes about
19 seconds. The results are shown in Fig. 7, where the blue line
is the ground truth of the target path, and the red circles are the
estimates of the proposed algorithm. The width of the person
is about 0.5 m and reflections from different parts of the body,
such as legs, arms, and the center of the body, are received at
different positions due to the high resolution of UWB signals.
Therefore, the blue line is in fact the approximate ground truth
for the path of the person. Therefore, the red circles slightly
digress from the blue line as expected. (The receiver noise and
multipath can also contribute to position estimation errors.)
The differences between the blue line and the red circles are
always smaller than 0.25 m in this scenario, which indicates
that the positions of the person can be estimated accurately by
the proposed algorithm in this case.

The second scenario (Scenario-2) for the single target case
involves a more challenging target path with target maneuvers
in a small area. In this scenario, the target starts to move from

Fig. 11. Range measurements of sensors in the multi-person tracking scenario
(Scenario-1). (a) Sensor 1, (b) Sensor 2, (c) Sensor 3, (d) Sensor 4.

position (0.6, 0.7) m. and comes back to the same position
after following the blue path in Fig. 8. The duration of the
experiment is approximately 29 s. Similar to the previous
experiment, the red circles in Fig. 8 are very close to the real
path and the algorithm performs very well for this difficult
scenario.
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Fig. 12. Scenario-2 for multiple person tracking. Green and blue solid
lines denote the ground truth of the first and second person, respectively.
Black squares are for UWB radar sensors.

In Fig. 9, the detection data obtained from the four UWB
radar sensors are illustrated for the scenario in Fig. 8.
As discussed in Section VI, the indices of the strongest
samples are calculated for the blocks of motion filtered data
that have an average value larger than the threshold. Therefore,
in the figures, the number of points at each time instant
indicates the number of blocks the average strength of which
are above the threshold (equivalently, the number of elements
in Zi

k for a given time index k and sensor index i ; see
Section VI). The points in the figures are color coded in such
a way that the colors blue, green, red, cyan, and magenta
are employed in the order of increasing distances from the
sensors; that is, the blue and purple points are used for the
detection points that are closest to and furthest away from
the given sensor, respectively. It is observed from Fig. 9 that
there are many non-target detections due to the high time
resolution of UWB signals. However, the proposed approach
can successfully eliminate the clutter and provide accurate
tracking results, as shown Fig. 8.

B. Multi-Person Tracking Results

Next, we consider cases in which multiple persons are walk-
ing. First, we choose to perform controlled experiments for
two persons. The first person starts from the position (3, 3) m.
and the other person starts from the position (0, 1.5) m.
The first person walks until (3, 0) m. and turns right. Then,
he walks until (1, 0) m. His velocity is about 0.3 m/s. The
second person walks in a straight line and its velocity is
about 0.25 m/s. The experiment takes about 16 seconds.
The ground truths are shown in Fig. 10 with the blue
and green lines. The red circles represent the estimation
results and they are commonly in the range of the human
body. Therefore, for the multiple person case, the algo-
rithm performs well in this scenario. There are some dif-
ferences between the single and multiple person tracking
scenarios. For instance, the sensor measurements are more
complicated in the multiple person case, which can be
observed by comparing the sensor data in Fig. 11 with
that in Fig. 9. In particular, when there are a larger num-
ber of detection points (represented by different colors)

Fig. 13. Range measurements of sensors in the multi-person tracking scenario
(Scenario-2). (a) Sensor 1, (b) Sensor 2, (c) Sensor 3, (d) Sensor 4.

for a time instant, target originated detections and clutters are
observed more frequently, which makes person tracking more
challenging.

One of the difficult tracking scenarios is the one shown
in Fig. 12 since there is an occlusion problem as the sen-
sors may not detect the locations of persons when they are
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in the same line. In general, the occlusion problem makes the
situation quite complicated. In this experiment, there are two
persons with the first one starting from (1.25, 0) m. and the
second one from (4, 2) m. The first person goes to (1.25, 3) m.
and then continues to walk until (2, 3) m. while the second
person goes to (4, 1) m. and then finishes his walk until
(0, 1) m. The red circles are the location estimates for the
persons. In this case, some points cannot be detected. However,
most of the time, the targets (persons) can be tracked with high
accuracy by the proposed algorithm.

The detection data of the sensors for the scenario in Fig. 12
are shown in Fig. 13. Processing the data is quite difficult
in this case since there are many clutters; in addition, when
the targets are closer to each other, they cannot be detected
separately because of the occlusion problem. However, the
proposed algorithm still provides accurate tracking in this
challenging scenario.

VIII. CONCLUDING REMARKS

In this study, multi-person tracking has been performed in
an indoor environment via UWB radar sensors. A detection
algorithm has been proposed and GM-PHD filtering has been
employed for accurate target tracking. A development kit
from TimeDomain has been used to collect data in an office
environment. Based on the data collection campaigns, the
performance of the proposed algorithm has been evaluated and
it has been shown that it can track single and multiple targets
accurately in various scenarios.
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